Whether it’s to allow for the control of robotic limbs or just to watch neurology in action, to really get at the inner workings of the brain it’s still necessary to access the gray squish of the brain itself. Unfortunately, accessing the brain up close means brain surgery, and most of us would rather avoid having our skulls opened up if at all possible. Alternatives, however, are limited.

This might not be the case for much longer. As described in a study published this week in Nature Biotechnology, researchers from the University of Melbourne have developed a matchstick-sized stent that can be inserted through a vein in a patient’s neck and the delivered to a suitable eavesdropping location within their skull. From this outpost, the stent (a small mesh tube meant to be implanted in a blood vessel) sends signals through wires to a transmitter in the patient’s chest.